Custom cover image
Custom cover image

Precast Concrete Wall Panels Incorporating Mixed Recycled Aggregates

By: Material type: ArticleArticleDescription: 75-88 pISSN:
  • 0889-325x
Subject(s): Online resources: In: ACI Materials JournalSummary: Mixed recycled aggregate (MRA) is considered a sustainable construction material, and its use in precast concrete is currently banned due to its poor engineering performance. This paper aims to evaluate the feasibility of partial replacement of natural coarse aggregate with MRA in self-consolidating concrete (SCC) for manufacturing architectural precast concrete sandwich wall panels. To this end, five MRAs from recycling plants were characterized, out of which two were selected to develop SCC. SCC mixtures with three replacement levels and three water compensation degrees were produced, and their physical, mechanical, durability, and aesthetic properties were examined. The results showed that the incorporation of MRA dominated the mechanical properties of SCC, while the water compensation degree primarily affected the flowability and carbonation resistance. The presence of MRA had no considerable effect on the aesthetic characteristics. Up to 10% MRA in weight of total aggregates could be used in precast SCC.
Holdings
Item type Current library Call number Vol info Status Date due Barcode
Articles Articles Periodical Section vol. 120, No.1 (Jan.2023) Available

Mixed recycled aggregate (MRA) is considered a sustainable construction material, and its use in precast concrete is currently banned due to its poor engineering performance. This paper aims to evaluate the feasibility of partial replacement of natural coarse aggregate with MRA in self-consolidating concrete (SCC) for manufacturing architectural precast concrete sandwich wall panels. To this end, five MRAs from recycling plants were characterized, out of which two were selected to develop SCC. SCC mixtures with three replacement levels and three water compensation degrees were produced, and their physical, mechanical, durability, and aesthetic properties were examined. The results showed that the incorporation of MRA dominated the mechanical properties of SCC, while the water compensation degree primarily affected the flowability and carbonation resistance. The presence of MRA had no considerable effect on the aesthetic characteristics. Up to 10% MRA in weight of total aggregates could be used in precast SCC.