Custom cover image
Custom cover image

Assessment of Abrasion Resistance of Fiber-Reinforced Concrete at Cold Temperatures through Acoustic Emission Analysis

By: Material type: ArticleArticleDescription: 41-54 pISSN:
  • 0889-325x
Subject(s): Online resources: In: ACI Materials JournalSummary: This study investigated using acoustic emission (AE) monitoring to assess the abrasion performance of fiber-reinforced selfconsolidating concrete at cold temperatures (–20°C). In addition, the study targeted correlating the abrasion damage to AE data through AE intensity analysis parameters. Seven concrete mixtures were developed with variable water-binder ratios (w/b) (0.4 and 0.55), fiber types (steel and polypropylene synthetic fibers), fiber lengths (19 and 38 mm), and fiber volumes (0.2 and 1%). Tests on 100 mm cubic samples were conducted at –20 and 25°C, for comparison, according to the rotating-cutter technique in conjunction with AE monitoring. Characteristics of the AE signals such as signal amplitudes, number of hits, and signal strength were collected and underwent b-value and intensity analyses, resulting in three subsidiary parameters: b-value, severity (Sr), and the historic index (H(t)). A clear correlation between abrasion damage progress and AE parameters was noticed. Analyzing AE parameters along with experimental measurements generally revealed a better abrasion resistance for all mixtures when tested at –20°C compared to those at room temperature. The mixtures with steel fibers, lower w/b values, shorter fibers, and higher fiber volume showed improved abrasion resistance irrespective of temperature. Noticeably, the mixtures containing longer fibers, higher w/b values, or lower fiber dosages experienced a more pronounced enhancement ratio in the abrasion resistance when cooled down to sub-zero temperatures. Two damage classification charts were developed to infer the mass loss percentage and wear depth due to abrasion using intensity analysis parameters: Sr and H(t).
Holdings
Item type Current library Call number Vol info Status Date due Barcode
Articles Articles Periodical Section Vol. 120, No.4 (July 2023) Available

This study investigated using acoustic emission (AE) monitoring to assess the abrasion performance of fiber-reinforced selfconsolidating concrete at cold temperatures (–20°C). In addition, the study targeted correlating the abrasion damage to AE data through AE intensity analysis parameters. Seven concrete mixtures were developed with variable water-binder ratios (w/b) (0.4 and 0.55), fiber types (steel and polypropylene synthetic fibers), fiber lengths (19 and 38 mm), and fiber volumes (0.2 and 1%). Tests on 100 mm cubic samples were conducted at –20 and 25°C, for comparison, according to the rotating-cutter technique in conjunction with AE monitoring. Characteristics of the AE signals such as signal amplitudes, number of hits, and signal strength were collected and underwent b-value and intensity analyses, resulting in three subsidiary parameters: b-value, severity (Sr), and the historic index (H(t)). A clear correlation between abrasion damage progress and AE parameters was noticed. Analyzing AE parameters along with experimental measurements generally revealed a better abrasion resistance for all mixtures when tested at –20°C compared to those at room temperature. The mixtures with steel fibers, lower w/b values, shorter fibers, and higher fiber volume showed improved abrasion resistance irrespective of temperature. Noticeably, the mixtures containing longer fibers, higher w/b values, or lower fiber dosages experienced a more pronounced enhancement ratio in the abrasion resistance when cooled down to sub-zero temperatures. Two damage classification charts were developed to infer the mass loss percentage and wear depth due to abrasion using intensity analysis parameters: Sr and H(t).