Custom cover image
Custom cover image

Introduction to AI Techniques for Renewable Energy Systems

By: Contributor(s): Material type: TextTextLanguage: English Publication details: Boca Raton, FL : CRC Press, c2021Edition: 1stDescription: XII, 410 p. : illISBN:
  • 9780367610920
Subject(s): DDC classification:
  • 621.042028563 TRI
Online resources: Summary: SUMMARY: Introduction to AI techniques for Renewable Energy System Artificial Intelligence (AI) techniques play an essential role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms used to model, control, or predict performances of the energy systems are complicated, involving differential equations, enormous computing power, and time requirements. Instead of complex rules and mathematical routines, AI techniques can learn critical information patterns within a multidimensional information domain. Design, control, and operation of renewable energy systems require a long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer from several shortcomings, like inferior quality of data, and in-sufficient long series. The book focuses on AI techniques to overcome these problems. It summarizes commonly used AI methodologies in renewal energy, with a particular emphasis on neural networks, fuzzy logic, and genetic algorithms. It outlines selected AI applications for renewable energy. In particular, it discusses methods using the AI approach for prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems. Features Focuses on a significant area of concern to develop a foundation for the implementation of renewable energy system with intelligent techniques Showcases how researchers working on renewable energy systems can correlate their work with intelligent and machine learning approaches Highlights international standards for intelligent renewable energy systems design, reliability, and maintenance Provides insights on solar cell, biofuels, wind, and other renewable energy systems design and characterization, including the equipment for smart energy systems This book, which includes real-life examples, is aimed at undergraduate and graduate students and academicians studying AI techniques used in renewal energy systems.
Holdings
Item type Current library Shelving location Call number Copy number Status Date due Barcode
Reference Collection Reference Collection Reference Section Reference Section 621.042028563 TRI 2022-23 Available 98116
Reference Collection Reference Collection Reference Section Reference Section 621.042028563 TRI 2023-24 Available 98439

Biography

Suman Lata Tripathi is working as a Professor at School of Electronics and Electrical Engineering, Lovely Professional University, India.


Mithilesh Kumar Dubey is working as an Associate Professor at School of Computer Science and Engineering, Lovely Professional University, India.

Vinay Rishiwal is working as a Professor at Department of Computer Science and Information Technology, Faculty of Engineering and Technology, MJP Rohilkhand University, Bareilly, Uttar Pradesh, India.


Sanjeevikumar Padmanaban is working as a faculty member, at Department of Energy Technology, Aalborg University, Esbjerg, Denmark.

SUMMARY:

Introduction to AI techniques for Renewable Energy System

Artificial Intelligence (AI) techniques play an essential role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms used to model, control, or predict performances of the energy systems are complicated, involving differential equations, enormous computing power, and time requirements. Instead of complex rules and mathematical routines, AI techniques can learn critical information patterns within a multidimensional information domain. Design, control, and operation of renewable energy systems require a long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer from several shortcomings, like inferior quality of data, and in-sufficient long series. The book focuses on AI techniques to overcome these problems. It summarizes commonly used AI methodologies in renewal energy, with a particular emphasis on neural networks, fuzzy logic, and genetic algorithms. It outlines selected AI applications for renewable energy. In particular, it discusses methods using the AI approach for prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems.

Features

Focuses on a significant area of concern to develop a foundation for the implementation of renewable energy system with intelligent techniques

Showcases how researchers working on renewable energy systems can correlate their work with intelligent and machine learning approaches

Highlights international standards for intelligent renewable energy systems design, reliability, and maintenance

Provides insights on solar cell, biofuels, wind, and other renewable energy systems design and characterization, including the equipment for smart energy systems

This book, which includes real-life examples, is aimed at undergraduate and graduate students and academicians studying AI techniques used in renewal energy systems.